

Tetrahedron Letters 41 (2000) 5035-5038

Transition metal complexes in organic synthesis. Part 62:¹ Total synthesis of

(±)-demethoxycarbonyldihydrogambirtannine and norketoyobyrine by an iron-mediated [2+2+1] cycloaddition

Hans-Joachim Knölker* and Simon Cämmerer

Institut für Organische Chemie, Universität Karlsruhe, Richard-Willstätter-Allee, 76131 Karlsruhe, Germany

Received 28 April 2000; accepted 9 May 2000

Abstract

(\pm)-Demethoxycarbonyldihydrogambirtannine was obtained in six steps and 49% overall yield from 3,4-dihydro- β -carboline using an iron-mediated [2+2+1] cycloaddition as the key-step. Oxidation of (\pm)-demethoxycarbonyldihydrogambirtannine led to norketoyobyrine. © 2000 Elsevier Science Ltd. All rights reserved.

Gambirtannine and (–)-dihydrogambirtannine **1a** are aromatized yohimbane alkaloids isolated from extracts of the leaves and stems of the Rubiacea *Uncaria gambier* (*Ourouparia gambir*), a tree growing in Southeast Asia.² The (–)-demethoxycarbonyldihydrogambirtannine **1b** was isolated first from the leaves of *Ochrosia lifuana* and *Ochrosia miana* (Apocynaceae).³ Subsequently it was found that **1b** represents the main alkaloid of the fruits of *Strychnos usambarensis*, a plant of the family Loganiaceae found in Africa.⁴ The consumption of these fruits was reported to cause poisoning.

1a R = COOMe

1b R = H

2a R = Me

2b R = H

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00766-8

^{*} Corresponding author. Fax: +49-721-698-529; e-mail: knoe@ochhades.chemie.uni-karlsruhe.de

Structurally related to these natural products are ketoyobyrine **2a**, a degradation product of yohimbine, and the norketoyobyrine **2b**. The aromatized yohimbanes **1** and **2** have been the target of various synthetic approaches. We have a continuous program directed towards the development of novel methodologies for organic synthesis using tricarbonyliron—diene complexes. In this context we envisaged a short synthetic route to the aromatized yohimbanes by an iron-mediated [2+2+1] cycloaddition of a 1,2-dipropargyl-substituted 1,2,3,4-tetrahydro-β-carboline derivative. The iron-mediated [2+2+1] cycloaddition of diynes and carbon monoxide is a very efficient method for the synthesis of cyclopentadienones. In this respect, we have previously investigated the transformation of bis(trimethylsilyl)-substituted terminal diynes to tricarbonyliron-complexed annulated cyclopentadienones and developed for the first time efficient methods for their selective demetalation to the corresponding free ligands. The annulated 2,5-bis(trimethylsilyl)cyclopentadienones are stable towards dimerization for steric reasons, but undergo a Diels—Alder reaction in the presence of appropriate dienophiles. This reactivity was recently utilized for a highly efficient synthesis of corannulene.

The alkylation of 3,4-dihydro-β-carboline 3 ¹⁶ with trimethylsilylpropargylmagnesium bromide was achieved by using the procedure of Nakagawa.¹⁷ Addition of the Grignard reagent to the preformed BF₃-iminium salt gave the 1-(trimethylsilylpropargyl)-1,2,3,4-tetrahydro-β-carboline 4 (Scheme 1). Subsequent N-alkylation of 4 led to the 1,2-bis(trimethylsilylpropargyl)-1,2,3,4tetrahydro-β-carboline 5 (67% yield over both steps). Heating of the diyne 5 with 2 equivalents of pentacarbonyliron in dimethoxyethane at 140°C for 20 h in a sealed tube afforded quantitatively the tricarbonyliron-complexed cyclopentadienone 6 as a mixture of two diastereoisomers in a ratio of 2:1. This result emphasized that using our optimized reaction conditions the ironmediated [2+2+1] cycloaddition of diynes and carbon monoxide is a very efficient process. Demetalation of complex 6 with trimethylamine N-oxide dihydrate (4 equivalents, acetone, 25°C, 1 h)^{9,10} resulted in complete decomposition. We recently described two novel procedures for the demetalation of tricarbonyl(η^4 -cyclopentadienone)iron complexes.^{11,12} Exchange of a carbon monoxide ligand by an hydrido ligand using NaOH and then by an iodo ligand with iodopentane provides by addition of phosphoric acid the corresponding dicarbonyl(η^5 -hydroxycyclopentadienyl)iodoiron complex, which is demetalated by contact with air in the presence of daylight.¹² This demetalation procedure was successfully used in the course of our corannulene synthesis.¹⁵ Application to the demetalation of complex 6 afforded the desired free ligand 7 in 57% yield. Finally, the best result for the conversion of complex 6 to the cyclopentadienone 7 was achieved by a photolytically induced ligand exchange reaction to the intermediate triacetonitrile (η^4 -cyclopentadienone)iron complex and subsequent demetalation in the air. 11 Using our original procedure (ligand exchange and demetalation at -30°C) the yield of 7 was 68%. Lowering of the reaction temperature to -40°C increased the yield of 7 to 87%. A trans conformation of the indolo[2,3-a]quinolizidine ring system was confirmed by the presence of Bohlmann bands in the IR spectrum¹⁸ and by the chemical shift of the angular proton at a field higher than 3.8 ppm in the ¹H NMR spectrum. ¹⁹ The Diels-Alder cycloaddition of the cyclopentadienone 7 and norbornadiene in toluene at reflux with concomitant extrusion of carbon monoxide and cyclopentadiene afforded the 16,19-bis(trimethylsilyl)-15,16,17,18,19,20-hexadehydroyohimbane 8 in 96% yield. Double protodesilylation of 8 using trifluoroacetic acid at reflux provided (±)-demethoxycarbonyldihydrogambirtannine rac-1b in 89% yield. The spectral data of our rac-**1b** ²⁰ are in good agreement with those of the natural product.^{3,4}

We next investigated the conversion of rac-1b to norketoyobyrine 2b (Scheme 2). Dehydrogenation of rac-1b with iodine gave the demethoxycarbonylourouparine iodide 9 (mp 335°C),

Scheme 1. Reagents and conditions: (a) (1) BF₃·OEt₂ (0.97 equiv.), THF, -23° C, 10 min, (2) Me₃SiC \equiv CCH₂MgBr (2.9 equiv.), Et₂O, -23° C, 15 h; (b) Me₃SiC \equiv CCH₂I (1.3 equiv.), THF, Na₂CO₃, 25°C, 20 h; (c) Fe(CO)₅ (2.0 equiv.), DME, 140°C, 20 h (sealed tube); (d) (1) hv, MeCN, -40° C, 2.5 h, (2) air, -40° C, 20 min; (e) norbornadiene (70 equiv.), toluene, 110°C, 12 h; (f) CF₃COOH, 72°C, 1 h

which was subsequently treated with alkaline hydrogen peroxide to afford norketoyobyrine **2b** (52% yield, mp 304°C) along with the demethoxycarbonylgambirtannine **10** (36% yield, mp 184–186°C). The spectral data and the melting points of the compounds **9**, **2b**, and **10** are in agreement with those reported in the literature.^{5,6}

Scheme 2. Reagents and conditions: (a) Iodine (6 equiv.), KOAc, EtOH, 78° C, 15 min; (b) NaOH/H₂O₂ (excess), reflux, 6 h

In conclusion, we have developed a highly efficient synthesis of (±)-demethoxycarbonyl-dihydrogambirtannine in six steps and 49% overall yield based on 3,4-dihydro-β-carboline. The chemistry described demonstrates for the first time that the iron-mediated [2+2+1] cycloaddition of diynes can be applied to the construction of polyheterocyclic frameworks and the total synthesis of biologically active alkaloids.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. We are grateful to the BASF AG, Ludwigshafen, for a generous gift of pentacarbonyliron.

References

- 1. Part 61: Knölker, H.-J.; Reddy, K. R. Tetrahedron 2000, 56, in press.
- 2. Merlini, L.; Mondelli, R.; Nasini, G.; Hesse, M. Tetrahedron 1967, 23, 3129.
- 3. Peube-Locou, N.; Plat, M.; Koch, M. Phytochemistry 1973, 12, 199.
- 4. Angenot, L.; Coune, C.; Tits, M. J. Pharm. Belg. 1978, 33, 284.
- (a) Clemo, G. R.; Swan, G. A. J. Chem. Soc. 1946, 617.
 (b) Schlittler, E.; Allemann, T. Helv. Chim. Acta 1948, 31, 128.
 (c) Swan, G. A. J. Chem. Soc. 1949, 1720.
- Beisler, J. A. Tetrahedron 1970, 26, 1961. Ninomiya, I.; Naito, T.; Takasugi, H. J. Chem. Soc., Perkin Trans. 1 1976, 1865. Meise, W.; Pfisterer, H. Arch. Pharm. 1977, 310, 501. Chatterjee, A.; Ghosh, S. Synthesis 1981, 818. Frostell, E.; Jokela, R.; Lounasmaa, M. Acta Chem. Scand. B 1981, 35, 671. Yamaguchi, R.; Otsuji, A.; Utimoto, K.; Kozima, S. Bull. Chem. Soc. Jpn. 1992, 65, 298.
- Knölker, H.-J. In Transition Metals for Organic Synthesis; Beller, M.; Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, Chapter 3.13, p. 534. Knölker, H.-J. Chem. Soc. Rev. 1999, 28, 151.
- Weiss, E.; Hübel, W.; Merényi, R. Chem. Ber. 1962, 95, 1155. Weiss, E.; Merényi, R.; Hübel, W. Chem. Ber. 1962, 95, 1170. Pearson, A. J.; Dubbert, R. A. J. Chem. Soc., Chem. Commun. 1991, 202. Pearson, A. J.; Shively, R. J.; Dubbert, R. A. Organometallics 1992, 11, 4096. Pearson, A. J.; Shively, R. J. Organometallics 1994, 13, 578.
- Knölker, H.-J.; Heber, J.; Mahler, C. H. Synlett 1992, 1002. Knölker, H.-J.; Heber, J. Synlett 1993, 924. Knölker, H.-J. J. Prakt. Chem. 1994, 336, 277.
- 10. Shvo, Y.; Hazum, E. J. Chem. Soc., Chem. Commun. 1974, 336. Knölker, H.-J. J. Prakt. Chem. 1996, 338, 190.
- 11. Knölker, H.-J.; Goesmann, H.; Klauss, R. Angew. Chem. 1999, 111, 727; Angew. Chem., Int. Ed. 1999, 38, 702.
- 12. Knölker, H.-J.; Baum, E.; Goesmann, H.; Klauss, R. Angew. Chem. 1999, 111, 2196; Angew. Chem., Int. Ed. 1999, 38, 2064.
- 13. Ogliaruso, M. A.; Romanelli, M. G.; Becker, E. I. Chem. Rev. 1965, 65, 261.
- 14. Knölker, H.-J.; Baum, E.; Heber, J. Tetrahedron Lett. 1995, 36, 7647.
- 15. Knölker, H.-J.; Braier, A.; Bröcher, D. J.; Jones, P. G.; Piotrowski, H. Tetrahedron Lett. 1999, 40, 8075.
- 16. Whittaker, N. J. Chem. Soc. C 1969, 85.
- 17. Kawate, T.; Nakagawa, M.; Yamazaki, H.; Hirayama, M.; Hino, T. Chem. Pharm. Bull. 1993, 41, 287.
- 18. Bohlmann, F. Chem. Ber. 1958, 91, 2157.
- 19. Uskokovic, M.; Bruderer, H.; von Planta, C.; Williams, T.; Brossi, A. J. Am. Chem. Soc. 1964, 86, 3364.
- 20. (±)-Demethoxycarbonyldihydrogambirtannine (rac-**1b**): colorless crystals; mp 196–197°C (lit.^{5a}: 196–197°C); ¹H NMR (500 MHz, CDCl₃): δ = 2.75 (dt, J = 4.0, 11.3 Hz, 1H), 2.83 (m, 1H), 3.01–3.12 (m, 2H), 3.19 (dd, J = 15.7, 3.8 Hz, 1H), 3.31 (dd, J = 11.3, 4.7 Hz, 1H), 3.70 (br d, J = 11.5 Hz, 1H), 3.80 (d, J = 14.9 Hz, 1H), 4.12 (d, J = 14.9 Hz, 1H), 7.11–7.21 (m, 6H), 7.33 (d, J = 7.9 Hz, 1H), 7.55 (d, J = 7.5 Hz, 1H), 7.83 (br s, 1H); ¹³C NMR and DEPT (125 MHz, CDCl₃): δ = 21.52 (CH₂), 34.81 (CH₂), 52.40 (CH₂), 56.32 (CH), 57.82 (CH₂), 108.77 (C), 110.83 (CH), 118.27 (CH), 119.54 (CH), 121.62 (CH), 126.12 (CH), 126.36 (CH), 126.45 (CH), 127.18 (C), 128.65 (CH), 133.19 (C), 134.42 (C), 134.58 (C), 136.31 (C); MS (120°C): m/z (%) = 274 (M⁺, 100), 273 (89), 272 (5), 271 (8), 245 (6), 244 (14), 230 (7), 170 (8), 169 (34), 144 (7), 143 (5), 130 (6), 115 (5), 105 (9), 104 (14); HRMS: calcd for C₁₉H₁₈N₂ (M⁺): 274.1470, found: 274.1478. Anal. calcd for C₁₉H₁₈N₂: C, 83.18; H, 6.61; N, 10.21; found: C, 83.00; H, 6.57; N, 10.42.